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Abstract

Corresponding-states shape factors for ethane, propane, iso-butane, n-butane and nitrogen,

with methane as the reference fluid, have been determined from the available experimental data.

We present simple six-parameter correlations of the results for each substance in a way that

enforces thermodynamic consistency.  Using the one-fluid model with our shape factors,

compression factors of mixtures of ethane and methane have been calculated and found to be in

good agreement with experimental values.
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Introduction

The corresponding states principle (CSP), whereby the configurational thermodynamic

properties of a fluid of interest are related to those of a chosen reference fluid, is a well-known

tool for the prediction of the properties of both pure fluids and mixtures.  In its simplest form

the CSP requires, in addition to the equation of state of the reference substance, just two

substance-dependent parameters (usually critical temperature Tc and pressure pc); it is then

entirely predictive but unfortunately its usefulness is restricted to small sets of very similar

substances.  The extended three-parameter theory of Pitzer [1], which includes an additional

substance-dependent parameter ω known as the acentric factor, is of much wider applicability.

The implementation of this theory due to Lee and Kesler [2] is particularly useful and offers an

accuracy that is satisfactory for the purposes of many engineering calculations.  Nevertheless,

there are a number of applications for which a model approaching the accuracy of good

experimental data is desirable.  One such example is natural gas systems where pVT properties

are required with high accuracy for custody-transfer purposes.

It is possible to map the thermodynamic properties of the fluid of interest onto those

of the reference fluid by associating each state point with a pair of numbers, known as shape

factors, that correct the simple CSP relations.  To the extent that the simple CSP is a useful

first approximation, the shape factors are expected to be of order unity and to vary slowly as

functions of temperature and density in a fluid of fixed composition. Unfortunately, there is no

efficient and reliable method by which these quantities may be calculated from molecular theory

and our present knowledge of shape factors is based entirely on the empirical evidence for

various substances.

Leland et al. [3] developed a correlation of shape factors for the light hydrocarbons,

based on methane as the reference fluid, and this made use of four substance-dependent

parameters: Tc, pc, ω and the critical compression factor Zc.  In the thirty years since that work,

there have been many improvements in the quantity and quality of the available experimental



data and it would seem useful to develop new correlations which exploit these facts.  The initial

objective of the present work is to develop simple correlations of the shape factors for the light

hydrocarbons, plus nitrogen, carbon dioxide and a few other substances, and to test their

usefulness in connection with a one-fluid theory for the prediction of mixture properties.  This

approach may provide a useful and accurate thermodynamic model for natural gas systems.

Theory

Definition of the shape factors

The basic relations between the properties of the fluid of interest and those of the reference

fluid may be stated as follows [4]:
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Here, τ = Tc/T is the inverse reduced temperature, δ = ρ/ρc is the reduced amount-of-substance

density, Z is the compression factor, nRTA /resres =Φ  is the dimensionless residual Helmholtz

free energy and subscript ‘0’ denotes properties of the reference fluid. The simple CSP asserts

that τ0 = τ and δ0 = δ, so that Z and Φres are universal functions of reduced temperature and

density.  In the extended CSP, it is recognised that this universality does not hold but that eqns.

(1) and (2) may be made exact through the introduction of temperature- and density-dependent

shape factors θ and ϕ such that
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The properties of the reference fluid may be obtained conveniently from an equation of state

explicit in the dimensionless Helmholtz free energy.  In particular, Z0 is given by
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Shape factors from experimental data

Given a pair of experimental values of Z and Φres for the fluid of interest, and an equation of

state for the reference fluid, eqns. (1) and (2) may be solved for the values of τ0 and δ0

pertaining to the state point in question; the corresponding shape factors are then obtained

from eqn. (3).  Repeating this calculation at many points leads to a table of the shape factors

that map the thermodynamic properties of the fluid of interest onto those of the reference fluid.

Obviously this procedure is not in itself predictive.

Thermodynamic consistency

For practical purposes it is usually preferable to have correlations of the shape factors as

functions of τ and δ but this must be done with care if thermodynamic consistency is to be

maintained.  This issue arises because, while eqn. (2) remains true, Z is also given by
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and, in view of eqn. (1), this is equivalent to
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Eqns. (2) and (6) will agree exactly if and only if the shape factors obey the constraint
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Exact consistency may be enforced by the following procedure: (a) correlate one of the shape

factors as a function of both τ and δ; (b) correlate only the zero-density values of the other

shape factor as a function of τ; and (c) determine the remaining density dependence by

integration of eqn. (7).



Zero-density shape factors

The complexity of most real substances is such that a theoretical evaluation of θ and ϕ is

generally impossible.  It is nevertheless possible to deduce the zero density shape factors θ0 and

ϕ0 from the second and third virial coefficients of the fluids and thus, indirectly, from the two-

and three-body intermolecular potential functions.  To do this, one writes both eqns. (1) and

(2) in terms of the virial equations of state for the fluid of interest and for the reference fluid

correct to order δ2. The shape factors are also expanded as polynomials in δ.  Then, solving the

corresponding states relations correct to order δ2, one obtains the following equations:
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These relations may be solved for θ0 and ϕ0 given correlations for the second and third virial

coefficients (or intermolecular potentials from which these quantities may be calculated).

Alternatively, if one of the zero-density shape factors is already determined then the other may

be obtained using just the second virial coefficients.

Application to mixtures

In this work, we follow rigorously the van der Waals one-fluid model of mixtures [4] without

considering separately mixture pseduo-critical constants and mixture shape factors.  Briefly, the

one-fluid model expresses the mixture compression factors ),( ρTZ x  in terms of that of a

single reference fluid by means of the relation
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where fx and hx are scaling parameters which are given by the van der Waals mixing rules:
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The pure component scaling factors are given by
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where for completeness we include binary interaction parameters kij and lij.  These expressions

for the mixture compression factor reduce exactly to eqns. (2) and (3) in the case of a pure

substance.

Pure-fluid shape factors

The first stage of the present work was to examine the shape factors of nitrogen and of several

light hydrocarbons, with methane as the reference fluid, without presuming any particular

functional form.  To do this we made use of experimental compression factors, vapour

pressures pσ, saturated vapour densities ρ″ and saturated liquid densities ρ′ for these

substances.  For all super-critical isotherms we determined values of Φres by quadrature

according to the relation
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In the sub-critical region, the procedure was to use eqn. (14) to obtain Φres at densities up to

the saturated vapour density, then to add the increment ∆Φres associated with crossing the co-

existence region and finally to integrate from the saturated-liquid density up to the greatest

desired density.  The increment ∆Φres is given by
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Having obtained Φres at the state points where experimental values of Z were available, we

solved eqns. (1) - (3) for the shape factors on a point-by-point basis.  The properties of the

reference fluid were obtained from the accurate equation of state due to Setzmann and Wagner

[5].

Figs. 1 - 3 illustrate results for ethane based on the experimental data of Douslin and

Harrison [6] along one sub-critical, one near-critical and one super-critical isotherm.  Error

bars indicate the approximate effect of uncertainties in the experimental data.  It is apparent

Fig. 1 Shape factor ϕ for ethane at τ = 1.1178 (T = 273.15 K): , derived from experimental

[6] data; , calculated from eqns. (16) and (17).



       

Fig. 2 Shape factor ϕ for ethane at τ = 0.99987 (T = 305.37 K): , derived from

experimental [6] data; , calculated from eqns. (16) and (17).



that, although quite smooth, the results at low densities are in fact subject to a large uncertainty

and this reflects the fact that the solution is illconditioned as ρ → 0.  We also show zero-

density shape factors obtained by solving eqns. (7) using correlations of the second and third

virial coefficients of ethane based on intermolecular-potential models.  For densities such that δ

is greater than about 0.5, the effects of the experimental uncertainties become quite small and

we see the shape factors approaching constant values as reported by other workers [3].  Very

similar behaviour was found on all isotherms, except those near to the critical temperature, for

ethane, propane and nitrogen.  The isotherms close to Tc show slightly more complicated

behaviour which we have not yet attempted to correlate.

Fig. 3 Shape factor ϕ for ethane at τ = 0.7216 (T = 423.15 K): , derived from experimental

[6] data; , calculated from eqns. (16) and (17).

The form of the curves obtained for the shape factor ϕ, combined with the associated

uncertainties, led us to correlate ϕ by means of the simple two-parameter function:
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This has the property of varying smoothly from )()( 21 ττ AA +  at zero density towards a

limiting high density value of )(1 τA .  Having adopted this functional form for ϕ with trial

values of the parameters, we solved the first of eqns. (8) for θ0 and then integrated eqn. (7) to

obtain θ along the whole isotherm.  The optimum values of the parameters )(1 τA  and )(2 τA

were determined for each of 28 isotherms reported by Douslin and Harrison [6] and, typically,

the compression factors on each isotherm were fitted to within about 0.1 per cent.  The

parameters so determined were found to be correlated well by the relations:
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This leads to a total of six parameters in addition to three intermolecular potential parameters

used to correlate the second virial coefficients.  Finally, these six parameters were optimised in

a single global fit to all of the isotherms except those in the range 273.15 < T/K < 323.15

around the critical temperature (Tc = 305.33 K).  The parameters determined in this way are

given in table 1 and, in table 2, we give the absolute average deviation (AAD) of the fit.  Also

given in table 2 is the AAD for all isotherms, including those in the critical region, and AAD’s

for the sub-critical and super-critical regions taken separately.  These figures show that the

global fit is generally good but clearly less accurate that the fit for a single isotherm.

The same procedure has been applied to nitrogen and propane with similar results

which we present in tables 1 and 2.  We also report results for n-butane and iso-butane but we

found that these substances conformed less-well to the functional form of ϕ devised for the

other substances; the AAD’s are consequently somewhat larger.



Application to a methane-ethane mixture

As a test of the model, compression factors of the mixture {0.749CH4 + 0.251C2H6} were

calculated and compared with the experimental data of Blanke and Weiss [11] in the

temperature range 273.7 K to 333.4 K at pressures up to 7 MPa. The binary interaction

parameter kij was optimised against the datum at the lowest temperature and the highest

pressure with the result kij = -0.0133. Fig. 4 shows the relative deviations of the experimental

data from the prediction; the AAD was 0.04 per cent. Broadly similar results were found for

other mixture compositions studied by Blanke and Weiss.

Table 1.  Parameters of eqn. (17).

C2H6 C3H8 n-C4H10 i-C4H10 N2

b1,1 -0.174570 0.678112 1.323605 0.675455 0.983174

b1,2 3.204108 0.874822 -0.843045 0.842524 0.041860

b1,3 1.205835 0.365789 -0.245955 0.284092 0.031031

b2,1 -0.093284 -0.033634 0.722702 0.282470 -0.013432

b2,2 1.705488 0.879460 -2.487791 0.639186 -0.111969

b2,3 -1.087056 -0.537378 0.730726 -0.925929 -0.048965



Table 2.  Absolute average percentage deviations of experimental data from the model in

different regions of the thermodynamic surface.

Overall Super-
Critical

Near-
Critical

Sub-Critical Non-
Critical

Data
Sources

C2H6 0.31 0.16 0.63 0.12 0.15 [6]

C3H8 1.02 0.10 2.02 0.36 0.24 [7]

n-C4H10 1.11 1.26 1.67 0.29 0.78 [8]

i-C4H10 0.65 0.57 1.00 0.50 0.52 [9]

N2 0.16 0.10 0.18 0.36 0.16 [10]

Fig. 4 Fractional deviations ∆Z/Z of experimental compression factors of {0.749 CH4 +

0.251 C2H6} [20] from the corresponding-states theory and the one-fluid model. ).+ ,

274 K;   , 283 K;   , 294 K; +, 304 K;   , 313 K;   , 323 K  , 333 K.



Conclusion

From our mapping of pure-fluid shape factors, we conclude that a relatively simple dependence

upon density exists for given substance although there is evidence that the functional form may

be somewhat substance dependent.  The behaviour of the shape factors in the critical region

clearly requires further investigation.  Finally, we are optimistic that a one-fluid model will

permit reliable predictions of mixture properties.

List of Symbols

A Helmholtz free energy

B Second virial coefficient

C Third virial coefficient

fx Mixture temperature-scaling parameter

hx Mixture density-scaling parameter

n Amount of substance

p Pressure

R Universal gas constant (R = 8.31451 J⋅K-1⋅mol-1)

T Temperature

V Volume

x Mole fraction

Z Compression factor

Greek letters

δ Reduced density, ρ/ρc

θ Shape factor (inverse temperature)

ρ Amount-of-substance density, n/V

τ Inverse reduced temperature, Tc/T

ϕ Shape factor (density)

Φ Dimensionless residual Helmholtz free energy, Ares/nRT



ω Acentric factor

Superscripts

c Critical property

res Residual property

σ Saturation value

′ Saturated liquid

′′ Saturated vapour

Subscripts

0 Reference-fluid property or zero-density value

i, j Component indices
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